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Abstract
Database systems for real-time applications must satisfy timing constraints associated with
transactions, in addition to maintaining data consistency. In addition to real-time requirements,
security is usually required in many applications. Multilevel security requirements introduce a new
dimension to transaction processing in real-time database systems. In this paper, we argue that
because of  the complexities involved, trade-offs need to be made between security and timeliness.
We first describe a secure two-phase locking protocol. The protocol is then modified to support an
adaptive method of trading off security for timeliness, depending on the current state of the system.
The performance of the Adaptive 2PL protocol is evaluated for a spectrum of security-factor values
ranging from fully secure (1.0) right upto fully real-time (0.0).

Keywords
Timeliness, concurrency control, two-phase locking, non-interference, security, miss percentage

1    INTRODUCTION

Database security is concerned with the ability of a database management system to enforce a
security policy governing the disclosure, modification or destruction of information. Most secure
database systems use an access control mechanism based on the Bell-LaPadula model [Bell76].
This model is stated in terms of subjects and objects. An object is understood to be a data file,
record or a field within a record. A subject is an active process that requests access to objects.
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Every object is assigned a classification and every subject a clearance. Classifications and clear-
ances are collectively referred to as security classes (or levels) and they are partially ordered. The
Bell-LaPadula model imposes the following restrictions on all data accesses:

a) Simple Security Property: A subject is allowed read access to an object only if the former’s
clearance is identical to or higher (in the partial order) than the latter’s classification.

b) The *-Property: A subject is allowed write access to an object only if the former’s clearance is
identical to or lower than the latter’s classification.

Database systems that support the Bell-LaPadula properties are called multilevel secure data-
base systems (MLS/DBMS). The Bell-LaPadula model prevents direct flow of information from
a higher access class to a lower access class, but the conditions are not sufficient to ensure that
security is not violated indirectly through what are known as covert channels [Lamp73]. A covert
channel allows indirect transfer of information from a subject at a higher access class to a subject
at a lower access class. An important class of covert channels that are usually associated with con-
currency control mechanisms are timing channels. A timing channel arises when a resource or
object in the database is shared between subjects with different access classes. The two subjects
can cooperate with each other to transfer information.

A real time database management system (RTDBMS) is a transaction processing system where
transactions have explicit timing constraints. Typically a timing constraint is expressed in the
form of a deadline, a certain time in the future by which a transaction needs to be completed. As
advanced database systems are being used in applications which need to support timeliness while
managing sensitive information, one cannot avoid the need for integrating real-time data process-
ing techniques into MLS/DBMS. In this paper, we discuss the issues that arise when transactions
in a secure database have timing constraints associated with them. For certain applications in
which absolute security is required for safety-critical operations, any trade-offs of security for
timeliness cannot be allowed. The approach presented in this paper is not intended to support such
applications.

2   BACKGROUND

2.1 Correctness Criteria for Secure Scheduler

Covert channel analysis and removal is one of the most important issues in multilevel secure con-
currency control. The notion of non-interference has been proposed [Gogu82] as a simple and
intuitively satisfying definition of what it means for a system to be secure. The property of non-
interference states that the output as seen by a subject must be unaffected by the inputs of another
subject at a higher access class. This means that a subject at a lower access class should not be
able to distinguish between the outputs from the system in response to an input sequence includ-
ing actions from a higher level subject and an input sequence in which all inputs at a higher access
class have been removed.

An extensive analysis of the possible covert channels in a secure concurrency control mecha-



nism and the necessary and sufficient conditions for a secure, interference-free scheduler are
given in [Keef90]. Three of these properties are of relevance to the secure two phase locking pro-
tocol discussed in this paper. For the following definitions, given a schedule s and an access level
l, purge(s,l) is the schedule with all actions at a level > l removed from s.

1) Value Security: A scheduler satisfies this property if values read by a subject are not affected by
actions with higher subject classification levels. Stated formally, for an input schedule p, the out-
put schedule s is said to be value secure if purge(s,l) is view equivalent to the output schedule pro-
duced for purge(p,l). Two schedules are said to be view equivalent if each transaction’s read
operations read the same value, and for each data object, the final write is the same in both sched-
ules.

2) Delay Security: This property ensures that the delay experienced by an action is not affected by
the actions of a subject at a higher classification level. For an input schedule p and an output
schedule s, a scheduler is delay secure if for all levels l in p, each of the actions a1 in purge(p,l) is
delayed in the output schedule produced for purge(p,l) if and only if it is delayed in purge(s,l).

3) Recovery Security: A system ensures that the occurrence of a deadlock appears the same to a
low-level subject, independent of whether higher level actions are in the schedule or not. The
actions taken to recover from deadlock are also not affected by the presence of higher level trans-
actions.

2.2 Approaches to Secure Concurrency Control

Locking will fail in a secure database because the security properties prevent actions in a transac-
tion T1 at a higher access class from delaying actions in a transaction T2 at a lower access class
(e.g. when T2 requests a conflicting lock on a data item on which T1 holds a lock). Timestamp
ordering fails for similar reasons, with timestamps taking the role of locks, since a transaction at a
higher access class cannot cause the aborting of another transaction at a lower access class. Lock-
ing and timestamping techniques can be adapted for secure DBMS.

Optimistic concurrency control for a secure database can be made to work by ensuring that
whenever a conflict is detected between a transaction Th at a higher access class in its validation
phase and a transaction Tl at a lower access class, the transaction at the higher access class is
aborted, while the transaction at the lower access class is not affected. A major problem with
using optimistic concurrency control is the possible starvation of higher-level transactions. For
example, consider a long-running transaction Th that must read several lower-level data items
before the validation stage. In this case, there is a high probability of conflict and as a result, Th
may have to be rolled back and restarted an indefinite number of times.

Basic multiversion timestamp ordering (MVTO) can be extended to Secure MVTO. The differ-
ence between Basic MVTO and Secure MVTO is that Secure MVTO will assign a new transac-
tion a timestamp that is earlier than the current timestamp. This effectively moves the transaction
into the past with respect to active transactions. This approach to timestamp assignment is what
makes it impossible for a transaction to invalidate a read from a higher access class.This method
has the drawback that transactions at a higher access class are forced to read arbitrarily old values



from the database because of the timestamp assignment. This problem can be especially serious if
most of the lower level transactions are long running transactions. Alternative approach is to
make higher access class transaction wait until all transactions that are lower and have arrived
earlier finish their execution.

3  SUPPORTING SECURITY AND TIMELINESS

There are several papers that have explored approaches to extend conventional databases for
time-critical applications [Abbo92, Sha91, Son92]. The problem arises when these approaches are
applied to secure databases, because covert channels can be introduced by priority-based schedul-
ing. All existing real-time systems schedule transactions based on some priority scheme. The pri-
ority usually reflects how close the transaction is to missing its deadline. Priority-based
scheduling of real-time transactions, however, interacts with the property of non-interference that
has to be satisfied for security. For example, consider the following sequence of requests:

          T1 (SECRET)                 :     R(X)
T2 (UNCLASSIFIED)    :                       W(X)
T3 (UNCLASSIFIED)    :                                          W(X)
T4 (UNCLASSIFIED)    :                                                            R(X)

Assume that T1, T2 and T3 have priorities 5, 7 and 10 respectively and the priority assignment
scheme is such that if priority(T2) > priority(T1), then T2 has greater criticalness and has to be
scheduled ahead of T1. In the above example, T2 and T3 are initially blocked by T1 when they
arrive. When T1 completes execution, T3 is scheduled ahead of T2, since it has a greater priority
than T2 and the transaction execution order would be T1 T3 T2 T4. However, if the transaction T1
is removed, the execution order would be T2 T3 T4 because T2 would have been scheduled as soon
as it had arrived. The presence of the SECRET transaction T1 thus changes the value read by the
UNCLASSIFIED transaction T4, which is a violation of value security. For the same reason delay
security is also violated, because the presence of T1 delays T2 with respect to T3.

We use the secure two phase locking protocol [Son94] as a basis for improving the timeliness
of secure database systems, because it showed the best average performance when compared to
other protocols. Priority-based transaction scheduling is not feasible for a fully secure database
system, because in a secure environment a transaction at a higher level:

• cannot cause the aborting of a transaction at a lower access class. If it is allowed to do so, it is
possible that it can control the number of times a lower level transaction is aborted, thereby
opening a covert channel.

• cannot conflict with a transaction at a lower access class. If such a conflict does occur, the
higher level transaction has to be blocked or aborted, not the low level transaction.

• cannot be granted greater priority of execution over a transaction at a lower access class.

Therefore, for minimizing deadline miss percentage, we take the approach that partial security
violations under certain conditions are permissible. In the subsequent sections, the Secure 2PL
protocol is described and the design of a trade-off factor between the security properties and the
real-time requirements is presented.



4  SECURE TWO-PHASE LOCKING

Basic two-phase locking does not work for secure databases because a transaction at a lower
access class (say Tl) cannot be blocked because of a conflicting lock held by a transaction at a
higher access class (Th). If Tl were somehow allowed to continue with its execution in spite of the
conflict, then non-interference would be satisfied. The basic principle behind the secure two-
phase locking protocol is to try to simulate execution of Basic 2PL without blocking of lower
access class transactions by higher access class transactions. Three different types of locks are
used for this purpose. Their semantics are explained below:

1) Real Lock (of the form pli[x]): A real lock is set for an action pi[x] if no other conflicting action
has a real lock or a virtual lock on x. The semantics of this lock are identical to that of the lock in
basic two phase locking.

2) Virtual Lock (of the form vpli[x]): A virtual lock vpli[x] is set for an action pi[x] if a transaction
at a higher access class holds a conflicting lock on x (pi[x] has to be a write to satisfy the Bell-
LaPadula properties). The virtual lock is non-blocking. Once a virtual lock vpli[x] is set, pi[x] is
added to queue[x] and the next action in Ti is ready for scheduling. When pi[x] gets to the front of
the lock queue, its virtual lock is upgraded to a real lock and pi[x] is submitted to the scheduler. A
virtual lock holding action vpli[x] can be superseded in the lock queue by a conflicting action
qj[x] if Tj is in before(Ti).

3) Dependent Virtual Lock (of the form dvpli[x]): A dependent virtual lock is set for an action
pi[x] (where p is a write) if a previous write wi[y] in the same transaction holds a virtual lock.
An action pi[x] which holds a dependent virtual lock with respect to another action wi[y] is not
allowed to set a real lock or a virtual lock unless wi[y]’s virtual lock is upgraded to a real lock.
The dependent lock is non-blocking and can be superseded by a conflicting action qj[x] if Tj is
before Ti in the serialization order.

4.1  An Example

Consider the two transactions in example 1:

T1 (SECRET)                : r[x]        ••• c1
T2 (UNCLASSIFIED)   : w[x]   c2

                                EXAMPLE 1

Basic two phase locking would fail because w2[x] would be blocked waiting for T1 to commit
and release rl1[x]. In our modification to the two-phase locking protocol, T2 is allowed to set a
virtual lock vwl2[x], write onto a version of x local to T2 and continue with the execution of its
next operation, i.e. c2. When T1 commits and releases the lock on x, T2’s virtual write lock is
upgraded to a real lock and w2[x] is performed. Until w2[x] is performed, no conflicting action is
allowed to set a lock on x. The sequence of operations performed is therefore, rl1[x] r1[x] vwl2[x]
c2 ••• c1 ru1[x] wl2[x] w2[x] wu2[x].



This modification alone is not enough, as illustrated in Example 2:

T1 (SECRET)                : r[x]                                r[y]   c1
T2 (UNCLASSIFIED)  : w[x]        w[y]    c2

                                    EXAMPLE 2

The sequence of operations that would be performed is rl1[x] r1[x] vwl2[x] vw2[x] wl2[y]
w2[y] c2. After these operations, deadlock would occur because r1[y] waits for w2[y] to release its
lock and vw2[x] waits for r1[x] to release its lock. This deadlock would not have occurred in basic
two-phase locking. Note that our aim of trying to simulate execution of basic two phase locking is
not being achieved. On closer inspection, it is obvious that this problem arises because w2[y] is
allowed to proceed with its execution even though w2[x] could only write onto a local version of
x because of the read lock rl1[x] set by T1. To avoid this problem, for each transaction Ti, two lists
are maintained - before(Ti) which is the list of active transactions that precede Ti in the serializa-
tion order and after(Ti) which is the list of active transactions that follow Ti in the serialization
order. The following additions are made to the basic two-phase locking protocol:

1) When an action pi[x] sets a virtual lock on x because of a real lock qlj[x] held by Tj, then Ti and
all transactions in after(Ti) are added to after(Tj), Tj and all transactions in before(Tj) are added to
before(Ti).

2) When an action wi[x] arrives and finds that a previous action wi[y] (for some data item y) has
already set a virtual write lock vwli[y], then a dependent lock dvwli[x] is set with respect to
vwli[y].

3) When an action pi[x] arrives and finds that a conflicting virtual or dependent lock vqlj[x] or
dvqlj[x] has been set by a transaction Tj which is in after(Ti), then pi[x] is allowed to set a lock on
x and perform pi[x] in spite of the conflicting lock.

4) A dependent virtual lock dvpi[x], dependent on some action qi[y] is upgraded to a virtual lock
when vqli[x] is upgraded to a real lock.

The maintenance of a serialization order and the presence of dependent locks are necessary to
prevent uncontrolled acquisition of virtual locks by transactions at lower access classes. For
Example 2, the sequence of operations that would now be performed is rl1[x] r1[x] vwl2[x]
dvwl2[y] c2 rl1[y] r1[y] c1 ru1[x] ru1[y] wl2[x] w2[x] wu2[x] wl2[y] w2[y] wu2[y].

The conditions given above are necessary to ensure that Delay Security is satisfied, but Value
Security could still be violated as shown in Example 3.

T1 (TOP SECRET)            : r1[y]  r1[x]     ••• c1
T2 (SECRET)                    :  r2[z]   c2
T3 (CLASSIFIED)             : w3[x]                 w3[z]   c3
T4 (UNCLASSIFIED)       : w4[y]  w4[z]   c4

                                EXAMPLE 3



When T4 requests a write lock on ‘y’, T1 already holds a real lock on ‘y’, i.e., T1 is set before T4
in the serialization order. When T1 requests a read lock on ‘x’, T3 already holds a write lock on
‘x’, i.e., T3 is set before T1 in the serialization order. When T3 requests a write lock on ‘z’, T4
already holds a dependent lock on ‘z’. However, T3 is before T1 in the serialization order and T1
is, in turn, before T4 in the serialization order, i.e., T3 is before T4 in the serialization order and so,
w3[z] is allowed to supersede w4[z] in the lock queue for ‘z’. Now, when r2[z] is submitted, it will
read the value of ‘z’ written by T4. However, if T1 had not been present, then T3 would not have
been before T4 in the serialization order. This means that w3[z] would not have superseded w4[z]
in the lock queue for ‘z’, i.e., r2[z] would have read the value of ‘z’ written by T3. Since the value
read by a SECRET transaction is affected by the presence of a transaction at the TOP SECRET
level, Value Security is being violated.

In general, an action in transaction T1 can supersede an action in transaction T2 if T1 is before
T2 in the serialization order. Now, Value Security could be violated if T1 is before T2 in the seri-
alization order because of the presence of a transaction T3 at a higher access class, i.e., if T3 is
between T1 and T2 in the serialization order. To overcome this problem, the action in T1 is not
allowed to supersede the action in T2 if such a case arises.

4.2 The Secure Two-Phase Locking Protocol

In the subsequent description of the protocol, queue[x] is a queue of operations, each of which
could be holding a lock (real, virtual, or dependent virtual) or waiting to set a lock (Wait). SL(Ti)
is the security access class of transaction Ti.

When an action pi[x] is submitted, one of three possible cases can arise:

Case 1

Read value of x written by wi[x];

Case 2

Upgrade rLock(Ti,x) to wLock(Ti,x);

Case 3

pos := length(queue[x]);

while ( )

Tj transaction at ;

if (operation( ) conflicts with p)

if

p read=( ) wLock Ti x,( ) VwLock Ti x,( )∨ DVwLock Ti x,( )∨( )∃∧

p write=( ) rLock Ti x,( )∃∧( )

j qLock Tj x,( ) VqLock Tj x,( )∨ DVqLock Tj x,( ) Wait Tj x,( )∨ ∨( ) j i≠( )∧(∃

p write=( ) q write=( )∨( )∧ )

pos 0>
← queue x[ ] pos→

queue x[ ] pos→

Ti before Tj( )∈( )

T3 T3 before Tj( )∈( ) T3 after Ti( )∈( )∧(∀

SL T3( ) SL Ti( )>( ) SL T3( ) SL Tj( )>( )∧ ∧ )



abort T3; /* value security violation */

if (lock( ) is a real lock)    /* deadlock */

call victim selection routine;

if (victim = Ti)

exit;

else

continue;

if ( )

if

Insert(queue,DVwLock(Ti,x),pos); /* insert after pos */

dependent(wi[z]) := wi[x];

else if (SL(Ti) < SL(Tj))

Insert(queue,VwLock(Ti,x),pos);

else

Insert(queue,pWait(Ti,x),pos);

before(Ti) := ;

after(Tj) :=

pos := pos - 1;

if (pos = 0)

Insert(queue[x],pLock(Ti,x),pos);

In addition, the following two conditions are to be satisfied by the transaction manager:

1) A transaction is allowed to commit, even if virtual writes performed by the transaction have not
been committed to stable storage, i.e the writes are still on some queue[x] waiting to set a real
lock on x.

2) Once an action pi[x] acquires a lock on a data item, the lock is not released until Ti commits
and pi[x] is performed on the data item x in stable storage. Therefore, in most cases, all the locks
that a transaction holds are not released when it commits.

The correctness of the protocol is proved in [Son94]. The protocol satisfies the value security
requirement by checking at the stage where it could possibly be violated. It also satisfies the delay
security because an action at a lower access class is never delayed by an action at a higher class.
Two additional problems that need to be addressed to make the protocol useful is the recovery
from system failures and deadlock resolution. The recovery procedure is discussed in [Dav93].

4.3 Deadlock Detection and Resolution

The secure two-phase locking protocol is not free from deadlocks. For example, consider the
input schedule:

queue x[ ] pos→

Ti before Tj( )∉

p write=( ) z VwLock Ti z,( ),∃( )∧( )

before Ti( ) Tj{ } before Tj( )∪ ∪

after Tj( ) Ti{ } after Ti( )∪ ∪



T1 (SECRET)                  : r[x]                      r[y]
T2 (UNCLASSIFIED)     : w[y]                       w[x]

The sequence of operations performed are rl1[x] r1[x] wl2[y] w2[y] vwl2[x] c2. After these
operations, deadlock would occur because r1[y] waits for w2[y] to release its lock and vw2[x]
waits for r1[x] to release its lock. Deadlocks can be detected by constructing a wait-for graph
[Bern87]. A scheduler recovers from a deadlock by aborting one of the transactions in the cycle.
A secure scheduler must ensure that Recovery Security is not violated by the choice of a victim.
This can be guaranteed by aborting a transaction at the highest access class in the cycle detected
in the wait-for graph.

5  AN ADAPTIVE SECURITY POLICY

The Secure 2PL exhibits a much better response time characteristic than Secure OCC. Its operat-
ing region (the portion of the curve before the saturation point) is much larger than that of Secure
OCC (Figure 1). Further, staleness is not an issue in Secure 2PL as with Secure MVTO. However,
this alone does not suffice when timing constraints are present on transactions. In Secure 2PL,
transaction scheduling order is determined purely by the order in which transactions acquire
locks. No conscious effort is made to schedule transactions according to their priority, or accord-
ing to how close a transaction is to meeting its deadline. In a real-time database system this is
unacceptable. In Section 3, we have seen that priority-driven scheduling of transactions could
lead to security violations. It is our claim that the security properties have to be sacrificed to some
extent to ensure a certain degree of deadline cognizance.

The bandwidth of a covert channel is a measure of how easy it is for the higher access class
transaction to control the delay seen by the lower access class transaction. If there is a great
degree of randomness in the system, i.e., an indeterminate number of transactions could be affect-
ing the delay that the higher access class transactions wants a lower access class transaction to
experience, then the bandwidth is low. On the other hand, if the higher access class transaction
knows that the lower access class transaction to which it wants to transmit information is the only
other transaction in the system, then the bandwidth is infinite. Therefore, when security has to be
sacrificed, a policy that keeps the bandwidth of the resulting covert channel to a minimum is
desirable. To ensure this, the security policy has to be adaptive, i.e., determining whether security
is to be violated or not when a conflict arises should depend on the current state of the system and
not on a static, predecided property.

Our adaptive policy to resolve conflicts between lock holding and lock requesting transactions
is based on past execution history. Whenever a transaction T1 requests a lock on a data item x on
which another transaction T2 holds a conflicting lock, there are two possible options:

- T1 could be blocked until T2 releases the lock.
- T2 could be aborted and the lock granted to T1.

If T1 were at a higher security level than T2, the latter option would be a violation of security.



However, if T1 has greater priority than T2, then the latter option would be the option taken by a
real-time concurrency control approach. In our approach, we strike a balance between these two
conflicting options by looking up past history. A measure of the degree to which security has been
violated in the past is calculated. A similar measure of the degree to which the real-time con-
straints have not been satisfied can be obtained from the number of deadlines missed in the past.
These two measures are compared and depending on which value is greater, either the security
properties are satisfied or the higher priority transaction is given the right to execute.

The two factors that are used to resolve a conflict are:

- Security Factor (SF):   (number of conflicts for which security is maintained / total number of
conflicts) * difference in security level between conflicting transactions.

- Deadline Miss Factor (DMF): number of transactions that missed their deadline / total number
of transactions committed

Two factors are involved in the calculation of SF. The first factor is the degree to which security
has been satisfied in the past, measured by the number of conflicts for which security has been
maintained. Secondly, we also assume that the greater the difference in security levels between
the transactions involved in the conflict, the more important it is to maintain security. DMF is
determined only by the number of deadline misses in the past. Note that for a comparison with
DMF, (1 - SF) has to be used, since (1 - SF) is a measure of the degree to which security has been
violated. Now, a simple comparison (1 - SF) > DMF is not enough, since different systems need to
maintain different levels of security. Therefore, we define two weighting factors, α and β for (1 -
SF) and DMF respectively. If α ∗ (1 − SF) > β * DMF, then for the conflict under consideration,
the security properties are more important and therefore the conflict is decided in favor of the
transaction at a lower access class. If the opposite is true, then the transaction with higher priority
is given precedence. Note that at low conflict rates, it is possible to satisfy both the security and
the real-time requirements simultaneously. As a result the comparison is not made until the DMF
reaches a certain threshold value DMISS_THRESH. The parameters DMISS_THRESH, α and β
can be tuned for the desired level of security. A very high value of DMISS_THRESH or a very
high value of α compared to β would result in SF being maintained at 1.0, i.e., for all conflicts the
security properties are satisfied. A very high value of β compared to α would result in an SF value
of 0.0, i.e., the behavior would be identical to that of 2PL-HP [Abbo92]. For a desired value of SF
between 0 and 1, the values of α, β and DMISS_THRESH would have to be tuned based on the
arrival rate of transactions.

The hybrid protocol is defined by the following rules:

If a conflict between a lock holding transaction T1 and a lock requesting transaction T2 arises,
the conflict is settled using the following rules:

• If DMF < DMISS_THRESH  then follow the steps taken by the Secure 2PL protocol
• Else If α * (1 - SF) > β * DMF, follow the steps taken by the Secure 2PL protocol
• Else break the conflict in favor of the transaction with the higher priority



6  PERFORMANCE EVALUATION

In this section, we present the results of our performance study of the Adaptive Secure 2PL proto-
col for a wide range of values of SF. The two main goals of our performance analysis are:

• To determine miss percentages for varying transaction arrival rates for various values of SF.
• Since our model assumes a soft deadline system, the second factor that has been measured is

tardy time - the difference between the commitment time and deadline for late transactions.

6.1 Simulation Model

Central to the simulation model is a single-site disk resident database system operating on shared-
memory multiprocessors. The system consists of a disk-based database and a main memory
cache. The unit of database granularity is the page. When a transaction needs to perform an oper-
ation on a data item it accesses a page. If the page is not found in the cache, it is read from disk.
CPU or disk access is through an M/M/k queueing system, consisting of a single queue with ‘k’
servers (where ‘k’ is the number of disks or CPUs).

In the model for Adaptive Secure 2PL, the execution of a transaction consists of multiple
instances of alternating data access requests and data operation steps, until all the data operations
in it complete or it is aborted. When a transaction makes a data request, i.e., lock request on a data
object, the request must go through concurrency control to obtain a lock on the data object. If α ∗
(1 − SF) < β * DMF, then if the transaction’s priority is greater than all of the lock holders, the
holders are aborted and the transaction is granted a lock; if the transaction’s priority is lower, it
waits for the lock holders to release the lock [Abbo92]. However, if α ∗ (1 − SF) > β * DMF, then
the steps taken by the Secure 2PL are followed. If the request for a lock is granted, the transaction
proceeds to perform the data operation, which consists of a possible disk access (if the data item is
not present in the cache) followed by CPU computation. However, if only a virtual or dependent
lock is granted, the transaction only does CPU computation, since the operation should only be
performed on a local version. If the request for the lock is denied (the transaction is blocked), the
transaction is placed into the data queue. When the waiting transaction is granted a lock, only then
can it perform its data operation. Also, when a virtual lock for an operation is upgraded to a real
lock, the data operation requires disk access and CPU computation. At any stage, if a deadlock is
detected, the transaction to be aborted to break the deadlock is determined, aborted and restarted.
When all the operations in a transaction are completed, the transaction commits. Even if a transac-
tion misses its deadline, it is allowed to execute until all its actions are completed.

6.2 Parameters and Performance Metrics

Table 1 gives the names and meanings of the parameters that control system resources. The
parameters, CPUTime and DiskTime capture the CPU and disk processing times per data page.
Our simulation system does not explicitly account for the time needed for data operation schedul-
ing. We assume that these costs are included in CPUTime on a per-data-object basis. The use of a
database cache is simulated using probability. When a transaction attempts to read a data page,
the system determines whether the page is in cache or disk using the probability BufProb. If the



page is determined to be in cache, the transaction can continue processing without disk access.
Otherwise disk access is needed.

Table 2 summarizes the key parameters that characterize system workload and transactions.
Transactions arrive in a Poisson stream, i.e., their inter-arrival rates are exponentially distributed.
The ArriRate parameter specifies the mean rate of transaction arrivals. The number of data
objects accessed by a transaction is determined by a normal distribution with mean TranSize, and
the actual data objects to be accessed are determined uniformly from the database.

The assignment of deadlines to transactions is controlled by the parameters MinSlack and Max-
Slack, which set a lower and upper bound, respectively, on a transaction’s slack time. We use the
formula for deadline-assignment to a transaction.

Deadline = AT + Uniform(MinSlack,MaxSlack) * ET

Table 1: System Resource Parameters

Parameter Meaning Base Value

DBSize Number of data pages in database 350

NumCPUs Number of processors 2

NumDisks Number of disks 4

CPUTime CPU time for processing an action 15 msec

DiskTime Disk service time for an action 25 msec

BufProb Prob. of a page in memory buffer 0.5

NumSecLevels Num. of security levels supported 6

Table 2: Workload Parameters

Parameter Meaning Base Value

ArriRate Mean transaction arrival rate   -

TranSize Average Transaction Size  6

RestartDelay Mean overhead in restarting 1 msec

MinSlack Minimum slack factor 2

MaxSlack Maximum slack factor 8



AT and ET denoting the arrival time and execution time, respectively. The execution time of a
transaction used in this formula is not an actual execution time, but a time estimated using the val-
ues of parameters TranSize, CPUTime and DiskTime. The priorities of transactions are decided by
the Earliest Deadline First policy.

The primary performance metric used is miss percentage, which is the ratio of the number of
transactions that do not meet their deadline to the total number of transactions committed. The
second performance metric is tardy time, which indicates the average amount of time to finish the
transaction beyond their deadlines.

6.3 Experiments and Results

For each experiment, we ran the simulation with the same parameters for 6 different random num-
ber seeds. Each simulation run was continued until 200 transactions at each access class were
committed. For each run, the statistics gathered during the first few seconds were discarded in
order to let the system stabilize after an initial transient condition. For each experiment the perfor-
mance measure was measured over a wide range of workload. All the data reported in this paper
have 90% confidence intervals, whose endpoints are within 10% of the point estimate.

6.3.1 Experiment 1: Secure 2PL vs Others

The first experiment was conducted to compare the average case performance of Secure 2PL.
Note that good average case performance is also essential for a real-time system. A slow system
cannot, however, be expected to meet timing constraints. In this experiment, the response times of
Secure 2PL, Secure OCC and Secure MVTO at each security level were measured for varying
arrival rates. The resulting graphs are shown in Figures 1 and 2. At low arrival rates, the response
times are more or less the same for all three approaches. This is because the contention levels are
low and majority of time is spent in disk access and CPU access rather than in resource queues,
lock queues or transaction aborts. As the arrival rate increases the impact of these factors
increases, and depending on how much they increase in each concurrency control approach, the
performance varies. In Secure OCC, the saturation point is reached much earlier than in Secure
2PL and Secure MVTO. As the arrival rate increases, the contention level for data items
increases. As a result, when a higher access class transaction reaches its validation stage, invari-
ably it would have conflicted with a transaction at a lower access class and would therefore have
to be aborted and restarted. It was found that the system reached a stage where, at the highest
access class, transactions were repeatedly being aborted and restarted, resulting in the steep
increase in response time at the saturation point. Now, since transactions are not being committed
while arrival rate is unchanged, the net number of active transactions keeps increasing, increasing
contention for the finite resources. It is because of this phenomenon that the response time for
lower access class transactions increases also at the saturation point. The performance margin of
Secure 2PL at level 0 over Secure 2PL at level 5 is small, indicating a greater measure of fairness
than in Secure OCC. In addition, the saturation point is reached at a much higher arrival rate in
Secure 2PL than in Secure OCC. Of course, the response time graph for Secure MVTO is the
best, since no transactions are blocked or aborted. The performance margin of Secure MVTO at
level 0 over Secure MVTO at level 5 is negligibly small. The rate of increase in response time
after the saturation point is also much less than that of both Secure OCC and Secure 2PL. How-



ever, in Secure MVTO, the good response time is offset by an unacceptable staleness factor. This
is all the more critical in a real-time environment, where data could have temporal constraints
associated with them.

6.3.2 Experiment 2: Adaptive Secure 2PL - Miss Percentage

In this experiment, the miss percentages for Adaptive Secure 2PL were measured for three differ-
ent settings of the SF values - fully secure (SF = 1.0), no security (SF = 0.0) and partially secure
(SF = 0.5), as shown in Figure 3. Since we are considering a real-time database system, we restrict
attention to the portion of the graph where miss percentages are less than 10%. The performance
after the saturation point is not an issue. As expected, 2PL-HP has the lowest miss percentage,
with the curve for 2PL (SF=0.5) falling between 2PL-HP and Secure 2PL.

6.3.3 Experiment 3: Adaptive Secure 2PL - Tardy Time

In this experiment, the average tardy times for Adaptive Secure 2PL were measured for three dif-
ferent settings of the SF values - fully secure (SF = 1.0), no security (SF = 0.0) and partially
secure (SF = 0.5). The resulting graph is shown in Figure 4. The results obtained confirm the
results obtained from the miss percentage experiment. The tardy time is maximum for Secure
2PL, with the curve for Adaptive 2PL (SF = 0.5) falling between that of Secure 2PL and 2PL-HP.

7. CONCLUSIONS

In this paper, we have presented an approach to scheduling transactions to meet their timing con-
straints in a secure database. Our simulation results substantiate our claim that an adaptive secu-
rity policy that sacrifices the security properties to some extent can significantly improve the
deadline miss performance. Although the improvement is only a few percentage, making few
more deadlines may make significant difference in overload situations in real-time applications.
The graphs illustrate that the performance improvement is getting bigger as the system load
increases.

The work described in this paper is more a direction for future research than a concrete solution
to the problem of secure real-time concurrency control. There are a number of issues that need to
be looked into. First of all, a proper characterization of the bandwidth of a covert channel that can
arise given a particular value of SF needs to be derived. Applications might express a desired
level of security in terms of a maximum admissible bandwidth of a potential covert channel.
Unless there is a way of determining to what extent a security policy satisfies the security proper-
ties, one cannot determine whether the policy is suitable for the application or not. Secondly, in
this paper we have considered a simple trade-off between deadline miss percentage and security.
A trade-off could also have been made between alternative factors depending on the application.
Thirdly, we have restricted ourselves to a soft deadline system with no overload management pol-
icy. It would be interesting to see how a policy to screen out transactions that are about to miss
their deadline would affect performance. Finally, in this paper, we have restricted ourselves to the
problem of real-time secure concurrency control in a database system. Some of the other issues



that need to be considered in designing a comprehensive real-time multilevel secure database sys-
tem (MLS/RTDBMS) are dealt with in [Son93]. Various types of MLS/RTDBMSs need to be
identified and architectures and algorithms developed for each type of system. Trade-offs need to
be made between security, timeliness and consistency on a case-by-case basis.
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